High Availability

RabbitMQ vs Kafka Part 6 - Fault Tolerance and High Availability with Kafka

In the last post we took a look at the RabbitMQ clustering feature for fault tolerance and high availability. In this post we'll dig deep into Apache Kafka and its offering.

With Kafka the unit of replication is the partition. Each topic has one or more partitions and each partition has a leader and zero or more followers. When you create a topic you specify the number of partitions and the replication factor. A replication factor of three is common, this equates to one leader and two followers. Both leaders and followers can be referred to as replicas.

RabbitMQ vs Kafka Part 5 - Fault Tolerance and High Availability with RabbitMQ Clustering

Fault tolerance and High Availability are big subjects and so we'll tackle RabbitMQ and Kafka in separate posts. In this post we'll look at RabbitMQ and in Part 6 we'll look at Kafka while making comparisons to RabbitMQ. This is a long post, even though we only look at RabbitMQ, so get comfortable.

In this post we'll look at the strategies for fault tolerance, consistency and high availability (HA) and the trade-offs each strategy makes. RabbitMQ can operate as a cluster of nodes and as such can be classed as a distributed system. When it comes to distributed data systems we often speak about consistency and availability.

We talk about consistency and availability with distributed systems because they describe how the system behaves under failure. A network link fails, a server fails, a hard disk fails, a server is temporarily unavailable due to GC or a network link is lossy or slow. All these things can cause outages, data loss or data conflicts. It turns out that it is generally not possible to provide a system that is ultimately consistent (no data loss, no data divergence) and available (will accept reads and writes) under all failure modes.

We'll see that consistency and availability are at two ends of a spectrum and you'll need to choose which of those you'll optimize for. The good news is that with RabbitMQ this is a choice that you can make. It gives you the nerd knobs required to tune it for greater consistency or greater availability.

In this post we'll be paying close attention to what configurations produce data loss of acknowledged writes. There is a chain of responsibility between producers, brokers and consumers. Once a message has been handed off to a broker, it is the broker's job not to lose that message. When the broker acknowledges receipt of a message to the publisher, we don't expect that message to be lost. But we'll see that this indeed can happen depending on your broker and publisher configuration.